How Does Pruning Impact Long-Tailed
Multi-Label Medical Image Classifiers?
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MOTIVATION RESULTS (CONT’'D)

* Pruning can reduce memory + latency T Coeaa=061 — = 080.p=0.75 ——»

with little change in overall performance 2 10- (No Finding ol (No Finding A
« However, unknown how pruning impacts model > O ° ' o © ®

behavior in long-tailed, multi-label classification - o ! o ' e >0 °

» Very common in clinical settings 8 e ¢ 1 o © ® e

» Knowledge gap could have dangerous implications! g, °° © ° F e
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1) HOW does pruning impaCt overall performance? o7 Firos.’ZSSparsOi;c?/ORatic?.\?v?th VT _O.I?{e;a(’)c.i?/e_c(:);an_gOeIGin_A(?I.DS e
2)Which classes are most impacted by pruning? @ 20% Dropin A7 at 95% Sparsity
3)How does disease co-occurrence factor in? 2) Rare classes are (i) forgotten earlier and
4)Which images are most vulnerable to pruning? (i) more severely forgotten at high sparsity
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« Curate 2 long-tailed, multi—label chest X-ray datasets 3) A disease’s forgettability can be explained by
> NIH-CXR-LT: 112,120 images | 20 classes prevalence and co-occurrence behavior
» MIMIC-CXR-LT: 257,018 images | 19 classes » FCD = MSE between two forgettability curves
> Diseases W/ larger differences in prevalence exhibit
» Experimental design: more distinct “forgetting trajectories” (lower FCD)
» Train 30 models, evaluate by average precision (AP) > The more two diseases co-occur, the more similar
> For each dataset and model, perform L1 pruning their forgettability curves (higher FCD)

at sparsity ratios k € {0, 0.05,0.1, ...,0.9,0.95}
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« Forgettability curve: For a given class, plot relative = I - I_ | ; ,

change In AP from uncompressed to k-sparse model
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» How do these curves relate to class frequency (long- . . . ] .
tailed) and co-occurrence behavior (multi-label)? 4) Pruning can identify images with complex disease

presentation, label noise, and low image quality
» PIE = image where original and pruned model disagree

RESU LTS « Bottom 5t percentile of correlation between predictions
» Rare classes are 3-15x overrepresented in PIEs
0.36 - NIH-CXR-LT MIMIC-CXR-LT » Images with 3+ diseases are ~2x overrepresented In PIEs
o 030 ' » INn human reader study, radiologists found PIEs to have:
TE% 0.24 - « more label noise, lower quality, + higher diagnosis difficulty
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Sparsity Ratio Weight Magnitude Weight Magnitude * Do these findings hold for other
architectures, datasets, Imaging
1) Up to 65% of weights can be pruned with no modalities, + compression methods?
significant impact on overall performance
> ResNet 50 is overparameterized for this task * Are PIEs (a) valuable "hard examples”
> Learned weights are naturally sparse, indicating only a that deserve upweighting or (b) noisy
small subset of neurons are needed for modeling examples that could be removed??




