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MOTIVATION RESULTS (CONT’D)

DATA & METHODS

FUTURE WORK PAPER

• Pruning can reduce memory + latency
with little change in overall performance

• However, unknown how pruning impacts model 
behavior in long-tailed, multi-label classification
Ø Very common in clinical settings
Ø Knowledge gap could have dangerous implications!

1) How does pruning impact overall performance?
2)Which classes are most impacted by pruning?
3)How does disease co-occurrence factor in?
4)Which images are most vulnerable to pruning?

• Curate 2 long-tailed, multi-label chest X-ray datasets
Ø NIH-CXR-LT: 112,120 images | 20 classes
Ø MIMIC-CXR-LT: 257,018 images | 19 classes

• Experimental design:
Ø Train 30 models, evaluate by average precision (AP)
Ø For each dataset and model, perform L1 pruning

at sparsity ratios 𝑘 ∈ 0, 0.05, 0.1, … , 0.9, 0.95

• Forgettability curve: For a given class, plot relative 
change in AP from uncompressed to 𝑘-sparse model
Ø Characterizes “forgettability” of a class upon pruning
Ø How do these curves relate to class frequency (long-

tailed) and co-occurrence behavior (multi-label)?

RESULTS

1) Up to 65% of weights can be pruned with no 
significant impact on overall performance
Ø ResNet 50 is overparameterized for this task
Ø Learned weights are naturally sparse, indicating only a 

small subset of neurons are needed for modeling

2) Rare classes are (i) forgotten earlier and
(ii) more severely forgotten at high sparsity

3) A disease’s forgettability can be explained by 
prevalence and co-occurrence behavior
Ø FCD = MSE between two forgettability curves
Ø Diseases w/ larger differences in prevalence exhibit

more distinct “forgetting trajectories” (lower FCD)
Ø The more two diseases co-occur, the more similar

their forgettability curves (higher FCD)

4) Pruning can identify images with complex disease 
presentation, label noise, and low image quality 
Ø PIE = image where original and pruned model disagree
• Bottom 5th percentile of correlation between predictions

Ø Rare classes are 3-15x overrepresented in PIEs
Ø Images with 3+ diseases are ~2x overrepresented in PIEs
Ø In human reader study, radiologists found PIEs to have:
• more label noise, lower quality, + higher diagnosis difficulty

• Do these findings hold for other 
architectures, datasets, imaging 
modalities, + compression methods?

• Are PIEs (a) valuable “hard examples” 
that deserve upweighting or (b) noisy 
examples that could be removed?


